Three flavonoids from *Trichosanthes kirilowii* Maxim.

Ying Xu Member, **Jian Wu** Non-member, **Zheng Xiang** Non-member, **Ning Chen** Non-member, **Wenlan Li** Non-member, **Yubin Ji** Non-member

(Received May 5, 2014, revised July 12, 2014)

Abstract: Three flavonoids compounds, 5,6,7,8,3′,4′-hexamethoxyflavone (1), 5,6,7,8,4′-pentamethoxyflavon (2), 7,3′-dihydroisofavones (3), were isolated from the fruits of *Trichosanthes kirilowii* Maxim. for the first time, and their structures were established on the basis of spectroscopic methods. The presences of these compounds (1-3) might be employed as the characteristic constituents of Cucurbitaceae family.

Keywords: flavonoids, *Trichosanthes kirilowii* Maxim., 5,6,7,8,3′,4′-hexamethoxyflavone, 5,6,7,8,4′-pentamethoxyflavon, 7,3′-dihydroisofavones

1. Introduction

Trichosanthes kirilowii Maxim. belongs to the family Cucurbitaceae and is widely distributed in Shandong province, Hebei province, Anhui province in China[1]. Previous phytochemical investigations resulted in the isolation of many compounds including terpenoids, sterols, flavonoids, saccharide derivatives and alkaloids[2]-[6]. In this study compounds (1-3) were isolated for the first time. The structures of these compounds were shown in Fig. 1.

2. The Experiments and Materials

The air-dried bark was exhaustively extracted with 95% ethanol after grounding into powder (20.0kg). The solvent was removed under reduced pressure to afford an extract (1.5kg). Then the extract was successively partitioned with petroleum ether, chloroform, ethyl acetate, and n-butanol. The chloroform extract (110g) was subjected to a silica gel chromatography, eluting with a gradient of CHCl₃/MeOH (100:1-1:1, v/v), to give six fractions (A-F). Fraction C (9.6 g) was applied to silica gel column chromatography, eluting with CHCl₃/MeOH (20:1 to 1:1, v/v), to furnish five fractions (1-5). Fraction 4 (5.3 g) was separated by a column of Sephadex LH-20 eluted with CHCl₃/MeOH 100:3, 100:7, 100:10 and 100:20 to gave compounds 1 (3.2 mg) and 2 (16.6 mg). Compounds 3 (6.4 mg) were obtained by recrystallization from CHCl₃.

3. Result and discussion

Compound 1 was obtained as yellow needles. Its molecular formula was determined as C₂₂H₂₁O₈ by ESI-MS at m/z 403.1315[M+H]⁺. The ¹H and ¹³C NMR spectra indicated six sp³ hybridization of high intensity of hydrogen proton signals; δH 4.02 (3H, s), 3.96 (3H, s), 3.88 (3H, s), 3.88 (3H, s), 3.85 (3H, s) and 3.79 (3H, s), ¹³C-NMR (75 MHz, DMSO-d₆) spectrum shown six carbon signals δC 62.0, 61.9, 61.6, 61.5×2 and 55.6, indicated the existence of 6 methoxy signals. δH 7.65 (1H, d, J = 8.7 Hz), 7.55 (1H, d, J = 1.8 Hz) and 7.16 (1H, d, J = 1.8, 8.7 Hz) revealed

* Research Center on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin 150076, China (hashangda117@163.com)
the structure with a benzene ring with ABX coupling system, benzene ring of carbon signal corresponding to the δC 127.9, 114.8 and 123.1. The 13C-NMR spectra given 21 carbon signals, remove 6 methoxyl matrix signal, the basic with the parent nucleus 15 carbon, speculated that the structure may be flavonoids compounds. δH 6.72 (1H, s) speculated that flavonoids three hydrogen proton signals. The above data, combined with the literature [7], identification the compound as 5, 6, 7, 8, 3’, 4’- hexamethoxyflavone, the NMR spectrum data were shown in Fig. 2, Fig. 3 and Table 1.

Compound 2 was obtained as yellow needles. Its molecular formula was determined as C_{20}H_{20}O_{7} by ESI-MS at m/z 374.1209[M+H]⁺. 1H-NMR (300 MHz, DMSO- d6) spec-
Three flavonoids from *Trichosanthes kirilowii* Maxim.

<table>
<thead>
<tr>
<th>Position</th>
<th>δ (ppm)</th>
<th>δ(ppm)(JinHz)</th>
<th>Position</th>
<th>δ (ppm)</th>
<th>δ(ppm)(JinHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>156.0</td>
<td>8.74 (1H, s)</td>
<td>9</td>
<td>152.0</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>124.0</td>
<td>-</td>
<td>10</td>
<td>119.3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>174.0</td>
<td>-</td>
<td>1’’</td>
<td>130.1</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>128.7</td>
<td>8.30 (1H, d, J=2.7 Hz)</td>
<td>2’’</td>
<td>119.3</td>
<td>7.78 (1H, s)</td>
</tr>
<tr>
<td>6</td>
<td>116.2</td>
<td>8.010 (1H, d, J=9.0 Hz)</td>
<td>3’’</td>
<td>156.4</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>160.2</td>
<td>-</td>
<td>4’’</td>
<td>134.1</td>
<td>7.72 (1H, m)</td>
</tr>
<tr>
<td>8</td>
<td>112.6</td>
<td>7.52 (1H, dd, J=2.7, 9.0 Hz)</td>
<td>5’’</td>
<td>129.9</td>
<td>7.65 (1H, m)</td>
</tr>
</tbody>
</table>

Figure 6: The 1H-NMR spectrum of compound 3

Figure 7: The 13C-NMR spectrum of compound 3

trum included five sp3 hydrogen proton signals at high intensity, δH 4.02 (3 H, s), δH 4.02 (3H, s) × 2, 3.85 (3H, s) and 3.78 (3H, s). 13C-NMR (75MHz, DMSO – d6) given five carbon signals δC 62.0, 61.9, 61.6, 61.5 and 55.8, indicated the existence of 5 methoxy signals. δH 8.0 (1H, d, J = 8.7 Hz)×2 and 7.14 (1H, d, J = 8.7 Hz), suggested there is a counterpoint to replace benzene ring system, benzene ring of carbon signal corresponding to the δC 123.2, 119.4 and 114.6×2. The 13C-NMR spectra given 20 carbon signals, remove 5 methoxyl matrix signal, the basic with the parent nucleus 15 carbon, speculated that the structure may be flavonoids compounds. δH 6.77 (1H, s) speculated the position three hydrogen proton signals in flavonoids. The above data, combined with the literature[7], identification the compound as 5, 6, 7, 8, 4’- pentamethoxyflavone, the NMR spectrum data were shown in Table. 1.

Compound 3 was obtained as colorless needles. Its molecular formula was determined as C15H12O4 by ESI-MS at m/z 257.0736[M + H]+. 13C-NMR (75MHz, DMSO-d6) given fifteen carbon signals, speculated that the structure may be flavonoids compounds. δH 8.74 (1H, s) indicated the structure as isoflavone stem nucleus. δH 8.30 (1H, d, J=2.7 Hz), 8.10 (1H, d, J=9.0 Hz) and 7.52 (1H, dd, J = 2.7, 9.0 Hz), revealed the structure with a benzene ring with ABX coupling system, benzene ring of carbon signal corresponding to the δC 128.7, 116.2 and 112.6. The above data, combined with the literature[8], identification the compound as 7, 3’-dihydroisofavones, NMR spectrum data were shown in Fig. 6, Fig. 7 and Table. 2.

4. Conclusion

The genus *Trichosanthes* (Cucurbitaceae) has approximately 80 species. About 40 species distribute in China, 20 of which are used in Traditional Chinese Medicine. Previous chemical investigation had demonstrated the presences of numerous compounds in the genus *Trichosanthes*. In this paper the phytochemical investigation on *Trichosanthes kirilowii* Maxim. led to the isolations of three flavonoids, including 5,6,7,8,3’,4’- hexamethoxyflavone (1), 5,6,7,8,4’-pentamethoxyflavon (2), 7,3’- dihydroisofavones (3), which were isolated from the fruits of *T. kirilowii* for the first time. Their structures were established on the basis of spectroscopic methods. The presences of these compounds (1-3) might be employed as the characteristic constituents of genus *Trichosanthes* and increased the chemical diversity in the Cucurbitaceae family.

Acknowledgment

This study was supported by Science and technology research project of Heilongjiang province department of education (No. 12541208). Thanks were due to Mrs. Li Wen and Mr. Yi Sha for the measurements of NMR spectra. In addition, the authors are grateful to Professor Xiao-Qiu Liu and Qi-Shi Sun for their kind help in the collection and the identification of the plant samples.

References

different applications.

Ying Xu (Member) received the M.Sc. and Ph.D. degrees in Natural Products Chemistry from the Shen yang Pharmaceutical University, Shen yang, China, in 2009 and 2012. Since 2012, she has been with the Department of Natural Products Chemistry, Harbin University of Commerce, where she has been a Researcher. She has authored/coauthored more than 20 technical papers and the holder of two patents. Her research areas include Natural Products Chemistry, Analytical Chemistry, Pharmaceutical chemistry, Pharmacology. Her most relevant activity has concerned the Natural Products Chemistry and control of High-performance liquid and she has joined several national research projects in the field of Natural Products Chemistry for many different applications.

Qichang Dai received the M.Sc. degree in Chinese materia medica from the Harbin University of Commerce, Harbin, China, in 2011. After a few years working in industry with medicine, he joined the Department of Natural Products Chemistry, Harbin University of Commerce, in 2014 as an Assistant Researcher. He has authored/coauthored several papers. His fields of interest include Traditional Chinese Medicine, High-performance liquid and computer-aided design of electrical machines.

Zongze Luan received the bachelor degree in Pharmacology from the Harbin University of Commerce, Harbin, China, in 2012. Since 2013, he has been with the Department of Analytical chemistry, Harbin University of Commerce, where he has been an Assistant Researcher. His scientific activity in the field of Analytical chemistry and Quality Research of Chinese Medicine. He has been involved in several industrial projects in the field of Quality Research in Chinese Medicine, as both a designer and a scientific reference.

Zheng Xiang received the M.Sc. and Ph.D. degrees in pharmacognosy from the Chinese medicine of Liaoning University, Da Lian, China, in 2009 and 2012. Since 2012, he has been with the Department of Natural Products Chemistry, Harbin University of Commerce, where he has been a Researcher. He has authored several papers published in Oil journals and Natural Products Chemistry. In 2012-2014, he was a Visiting Fellow at the Macau Science and Technology University, Macau, China. He is involved in research projects with industry. He has authored/coauthored more than 20 technical papers and the holder of two patents. His research areas include Plant chemistry, Ocean Chemistry and Zoology.

Jan Wu received the M.Sc. and Ph.D. degrees in Analytical Chemistry from the Shen yang Pharmaceutical University, Shen yang, China, in 2008 and 2012. Since 2012, he has been with the Department of Analytical chemistry, Harbin University of Commerce, where he has been a Researcher. He has authored/coauthored more than 10 technical papers. His research areas on Life Sciences and Environmental Sciences, Engineering Research Center of Natural Anticancer Drugs, Ministry of Education. The Research Areas including Quality Research in Chinese Medicine, the material base of the anti-tumor Chinese medicines.

Yuling Fan received the Ph.D. degrees in Pharmaceutical chemistry from the Shen yang Pharmaceutical University, Shen yang, China, in 2003. Since 1997, she has been with the Department of Pharmaceutical chemistry, Harbin University of Commerce, where she has been an Assistant Professor since 2002. Her fields of interest include Plant chemistry, Ocean chemistry and Zoology. She has led two national research projects in the field of Pharmaceutical chemistry and She has authored or coauthored more than 30 technical papers.