Comparison between Measurements and Estimated Chromaticity of Colors Displayed by Switching Two Colors on a Liquid Crystal Display

CHIKAKO ISHIZAWA† Member, NOZOMI ARAYA‡ Non-member
YOICHI KAGEYAMA† Non-member, MAKOTO NISHIDA† Non-member

(Received October 6, 2015, revised December 18, 2015)

Abstract: The overall objective of this research is to develop the method to display a desired color through the switching of two different colors on a liquid crystal display (LCD). This paper describes the measurements and estimated chromaticity of the colors displayed when switching two different colors on a LCD. First, the colors displayed on the LCD are measured when red, green, blue, yellow, cyan, and magenta with different gradations are each changed to black. The colors displayed are also measured when changed into colors of the same types but with different gradations. As a result, we confirmed for all cases that the chromaticity of the displayed colors was equal to the average of the two colors that were switched. Next, a method for estimating the chromaticity of the colors displayed through the switching of two colors was proposed. The comparison results between the estimated and measured chromaticity indicate that the proposed method is able to estimate closely the chromaticity of the displayed colors.

Keywords: Switching of colors, Chromaticity, Liquid crystal display, Color matching

1. Introduction
Owing to the widespread use of digital and mobile phone cameras, photography has become a ubiquitous activity. However, illegal photography using such devices has generated certain social problems. For example, copyright infringement cases have occurred in which the movie scenes broadcasted on television are captured by a digital camera and the resulting image files are posted onto the Internet [1][2].

To prevent users from taking photos of an image shown on a display, digital watermark methods have been proposed [3]–[5]. However, such methods intend to identify where the image was photographed by detecting specific embedded information (i.e., a watermark) not perceivable by the human eye. Thus, although digital watermarks have the effect of suppressing the use of illegal photographs and image, it is still impossible to prevent the photographs from being taken in the first place.

On the other hand, when two different colors are switched at high speed, it becomes impossible for a human to distinguish them, and the resulting color from the mixing of two original colors can be perceived. This color mixing is called successive additive color mixing [6][7]. Displaying such colors on an LCD by using successive additive color mixing may be applied to protect a displayed image. For instance, when images of red and green color are switched, as shown in Fig. 1, a yellow image will be perceived. However, a photograph of the image will show red or green. Thus, the image displayed cannot be captured properly.

It is known that the average color is perceived when applying successive additive color mixing [6][7]. However, there are no examples of executing successive additive color mixing on an LCD. In addition, to create an image with swapped colors by modifying the color of the original image, it is necessary to estimate the color displayed when the two colors are switched on the LCD. In this study, we measured the chromaticity of the colors displayed when two different colors are switched on an LCD. Furthermore, we propose a method for estimating the chromaticity of the colors displayed through the switching of two colors.
2. Color display system on the LCD

Figure 2 shows the sub-pixels that constitute a single pixel on a LCD. Each sub-pixel outputs a light with the brightness corresponding to the RGB levels. A color is displayed through a mixture of three outputted lights [8].

When the colors are switched, each sub-pixel takes one of the four following states:

- **State 1**: the lights are constantly outputted.
- **State 2**: the lights are turned on and off repeatedly.
- **State 3**: the strengths of the lights are changed repeatedly.
- **State 4**: the lights are not outputted.

Figure 3 shows an example of the above states.

Usually, the response time when lights with low and high levels of brightness are switched, such as in state 2, is quick on an LCD. However, the switching of lights with a mid-level of brightness, such as in state 3, is slow. Therefore, it is necessary to check whether a color displayed during state 2 or 3 is equal to the average of the two switching colors.

3. Chromaticity measurement of the displayed color through the switching

3.1 Measurement method

The mean of the integral time is provided as the measurement result. Therefore, we can obtain the chromaticity of the color displayed by switching between yellow and black. Similarly, the chromaticity of the color displayed through repetition of switching during states 2 and 3 was also measured.

3.2 Measurement results and discussion

3.2.1 Chromaticity of the color displayed by repeatedly turning the lights on and off (state 2) Figure 6 shows an example of the measurement results. The horizontal axis expresses the gradation level (RGB values) of the color, and the vertical axis expresses the chromaticity (XYZ values). In Fig. 6, a cross expresses the chromaticity of the displayed color, and a circle expresses the chromaticity of the color other than black used for the switching. The chromaticity increases in a curve with an increase in the gradation. Table 4 shows the XYZ values of red, green, and blue with a gradation value of 255. The comparison results using the maximum values show that the XYZ values of the colors displayed are half those of the switching colors. It is thought that the light quantum from the sub-pixels is halved because black is used for the switching. A similar result was shown for yellow, cyan, and magenta. This result suggests that the chromaticity of the color displayed through repetitively turning on and off the lights is calculated based on the average colors used in the switching.

When yellow and black are switched, the red and green sub-pixel lights are turned on and off repeatedly. The chromaticity of the color displayed by switching between yellow and black was compared with the chromaticity of the color displayed by switching between red and green. Similarly,
the switching of cyan was compared with the switching of green and blue, and the switching of magenta was compared with the switching of red and blue. Figure 7 shows the results for yellow. The yellow marks in Fig. 7 indicate the chromaticity of the color displayed through the switching between yellow and black. The black marks in Fig. 7 indicate the total of the chromaticity obtained through the switching of red and the switching of green. The chromaticity of the color displayed through the switching between yellow and black is equal to the total chromaticity of switching between red and green. A similar result was obtained between cyan and magenta. This result suggests that the calculation of the chromaticity is possible using the method of additive color mixing when the lights of the sub-pixels are turned on and off repeatedly.

3.2.2 Chromaticity of color displayed through a repeated change in the strength of the lights (state 3)

Figure 8 shows an example of the measurement results. The chromaticity of the color displayed when red with a gradation level of 127 is combined and switched with red with a gradation level of 15 to 255 were shown in Fig. 8. The chromaticity of the displayed colors was compared with the average of the two colors used for the switching. It was confirmed that the chromaticity of the displayed color nearly match the average chromaticity of the two switching colors. Similar results were also shown through combinations of green and blue using other gradation. This result suggests that the chromaticity of the color displayed by repeated changes in the strength of the lights is based on the average chromaticity of the colors used for the switching.

4. Estimation method of chromaticity

The chromaticity of the color is different in even a same RGB values by the individual difference of the display. To estimate the chromaticity of the color without depending on the individual difference, it is necessary to clarify the relationship between the brightness and the gradation levels of the LCD. Therefore, the proposed method make the gradation curve of the each sub-pixels, and calculate the chromaticity using the gradation curve. The proposed method consists of three steps as shown in Fig. 9. Usually, the chromaticity of a color displayed on an LCD is expressed using the XYZ color system. In the proposed method, the chro-
Chromaticity is also calculated using the XYZ values.

4.1 Calculate the maximum chromaticity of the sub-pixels

The maximum chromaticity of each sub-pixel is calculated to define the characteristics of the gradation curve. Three LCD settings (the color temperature of the reference white, the color gamut, and the gamma value) and the Y value obtained through the measurements are used to calculate the maximum chromaticity. The calculation procedure is as follows:

(a) Convert the color temperature of the reference white (Xw, Yw, Zw) on an xy chromaticity diagram.

(b) Calculate the XYZ values of the reference white (Xw, Yw, Zw) by applying the ratio of X, Y, and Z to the maximum luminance. This calculation is as follows:

\[
\begin{align*}
X_w &= L \times x_w / y_w \\
Y_w &= L \times 1 \\
Z_w &= L \times (1 - x_w - y_w) / y_w
\end{align*}
\]

where \(x_w \) and \(y_w \) are the chromaticity coordinates of the reference white, and \(L \) is the maximum luminance value of the displayed colors, which is obtained by summing each Y value of red, green, and blue with a gradation of 255.

(c) Calculate the maximum XYZ value of each sub-pixel by applying the ratio of red, green, blue to the reference white, the calculation of which is as follows:

\[
\begin{align*}
X_{R-MAX} &= X_w \times x_r / (x_r + x_G + x_B) \\
Y_{R-MAX} &= Y_w \times y_r / (y_r + y_G + y_B) \\
Z_{R-MAX} &= Z_w \times z_r / (z_r + z_G + z_B)
\end{align*}
\]

where \(x_r, y_r, \) and \(z_r \) are the chromaticity coordinates of the brightest red within the color gamut of the LCD; \(x_G, y_G, \) and \(z_G \) are the chromaticity coordinates of the brightest green; and \(x_B, y_B, \) and \(z_B \) are the chromaticity coordinates of the brightest blue. The maximum XYZ value of the red sub-pixel is obtained through expression 2. The expressions of green and blue are also defined in this same way.

4.2 Define the characteristic of the gradation curve of the sub-pixels

Define the characteristic of the gradation curve depending on the state of the sub-pixels. Expression 3 is used when the sub-pixels output a constant light (state 1). Expression 4 is used when the sub-pixels are blinking (states 2 and 3). For instance, when red and green are switched, the chromaticity of yellow is determined to be the sum of the chromaticity of the red and green sub-pixels as represented through expression 4. In addition, when red and yellow are switched, the chromaticity of the displayed color is determined to be the sum of the chromaticity of the red sub-pixels as represented through expression 3, and the chromaticity of the green sub-pixels as represented through expression 4.

\[
\begin{align*}
X_R &= X_{R-MAX} \times (N/255)^\gamma \\
Y_R &= Y_{R-MAX} \times (N/255)^\gamma \\
Z_R &= Z_{R-MAX} \times (N/255)^\gamma
\end{align*}
\]

\[
\begin{align*}
X_R &= X_{R-MAX} \times ((N_1/255)^\gamma + (N_2/255)^\gamma) / 2 \\
Y_R &= Y_{R-MAX} \times ((N_1/255)^\gamma + (N_2/255)^\gamma) / 2 \\
Z_R &= Z_{R-MAX} \times ((N_1/255)^\gamma + (N_2/255)^\gamma) / 2
\end{align*}
\]

where \(N, N_1, \) and \(N_2 \) are the gradation value of the sub-pixels. \(N_1 \) and \(N_2 \) are corresponding to the two switching colors. \(\gamma \) is the gamma value of the LCD.

4.3 Estimate the chromaticity of the displayed colors

The chromaticity of a displayed color is calculated based on the total chromaticity of each sub-pixel as expression 5.

\[
\begin{align*}
X &= X_R + X_G + X_B \\
Y &= Y_R + Y_G + Y_B \\
Z &= Z_R + Z_G + Z_B
\end{align*}
\]

where \(X, Y, \) and \(Z \) are the chromaticity of a displayed color.
5. Comparison results and discussion

To examine the usefulness of the proposed method, the estimated chromaticity was compared with the measured values provided in chapter 3. We confirmed whether the proposed method could estimate the chromaticity of the color shown in Table 3 or not. Figure 10 shows the example of the comparison results when the red shown in Table 3 was estimated. In Fig. 10, where the horizontal axis expresses the gradation level (RGB values), and the vertical axis expresses the chromaticity (XYZ values). The results show that the estimated chromaticity of a color displayed through the switching of two colors almost matches the measured chromaticity. A similar result was shown for other colors. Therefore, the chromaticity of the color displayed through the switching of colors shown in Table 3 will be supposed with half values of the chromaticity shown in Fig. 10. This result suggests that the proposed method is able to estimate closely the chromaticity of the displayed colors through the switching of various colors.

6. Conclusions

This paper measured the chromaticity of the colors displayed when two different colors are switched on an LCD. Additionally, a method for estimating the chromaticity of the colors displayed through the switching of two colors was proposed. The following results were obtained:

(a) The chromaticity of the colors displayed through the switching of two colors on an LCD was equal to the average chromaticity of the two colors used in the switching.

(b) The proposed method was able to estimate the chromaticity of the colors displayed when switching two colors on an LCD.

For our future study, we intend to propose a method for choosing two colors to switch based on the desired color of the original image.

Acknowledgment

The authors would like to thank Dr. T. Takahashi, Akita University for his help in conducting these experiments. This work was supported by JSPS KAKENHI, Grant Number 15K00145.

References

Chikako Ishizawa (Member) received the B.E. degree in chemical engineering for resources from Akita University, Japan, in 1992, and joined FUJIFILM Software Co., Ltd. She joined Akita University in 1995. She received a D.Eng. degree from Akita University in 2012. She is now an Assistant Professor with the Department of Computer Science and Engineering, Graduate School of Engineering and Resource Science. Her research interests include image security.

Nozomi Araya (Non-member) received the B.E. degree in computer science and engineering from Akita University, Japan, in 2015. He jointed NEC Solution Innovators, Ltd. in 2015. His research interests include image security.

Yoichi Kageyama (Non-member) received the B.E. and M.E. degrees in computer science and engineering and the Ph.D. degree from Akita University, Japan, in 1995, 1997, and 2001 respectively. He joined Akita University as a Research Associate in 1997. He became an Assistant Professor in 2001 and an Associate Professor in 2004. He is now a Professor with the Department of Computer Science and Engineering, Graduate School of Engineering and Resource Science. His research interests include remote sensing, image processing, and image recognition.

Makoto Nishida (Non-member) graduated from the Department of Electrical Engineering, College of Mining, Akita University, Japan, in 1974, and joined Toyota Motor Co. Ltd. He became a Research Associate with the College of Mining, Akita University, in 1975. After serving as an Assistant Professor and an Associate Professor, he became a Professor in 1996. He was appointed Director of the General Information Processing Center in 2007. Dean of the Faculty of Engineering and Resource Science in 2008. Dean of the Graduate School of Engineering and Resource science in 2010, and Executive Director/Vice President in 2011 at Akita University. He is now Professor in the Department of Computer Science and Engineering, Graduate School of Engineering and Resource Science. His research interests include remote sensing, image information applications, and knowledge-based information systems. During 1988-1989 he was a Visiting Researcher at Clarkson University. He holds a D.Eng. degree.