Mobile Robot for Environmental Measurement in Greenhouse

  • Kenichi Iida National Institute of Technology, Nara College
  • Hikaru Kumamoto Nara Institute of Science and Technology
  • Shigeto Nakamura National Institute of Technology, Nara College
  • Etsuko Ueda Osaka Institute of Technology


The environmental information in the greenhouse is one of the essential items in precision agriculture for improving the productivity of crops. In many cases of environmental measurement in the greenhouse, a fixed sensor can measure near the installation location. However, to estimate the distribution of environmental information in the whole greenhouse, it is necessary to install many sensors, which increases the cost. Therefore, in this study, to acquire more detailed environmental information, we propose the system to measure the environmental information in the greenhouse by the mobile robot using ROS. The proposed mobile robot consists of the CO2 sensor, the temperature sensor, the humidity sensor, and LRF for environmental sensing. In this paper, we confirmed the usefulness of the proposed system from the verification experiment using a prototype mobile robot.


“Annual Report on Food, Agriculture and Rural Areas trends in Japan FY 2017”, The Ministry of Agriculture, Forestry and Fisheries of Japan, pp.1, 2017.

Shumpei Uegaki, Hidekazu Araki, Ryo Toshima, Makoto Shinzaki, Daisuke Ueta, and Ryuji Yamazaki, “Tomato-Harvesting Robot using AI for Environment Recognition”, Panasonic Technical Journal, Vol.64, No.1, pp.54-59, 2018.

Karim Foughali, Karim Fathallah and Ali Frihida, “Using Cloud IOT for disease prevention in precision agriculture”, Procedia Computer Science, Vol.130, pp.575-582, 2018. DOI: 10.1016/j.procs.2018.04.106

I. Mohanraj, Kirthika Ashokumar and J. Naren, “Field Monitoring and Automation using IOT in Agriculture Domain”, Procedia Computer Science, Vol.93, pp.931-939, 2016. DOI:10.1016/j.procs.2016.07.275

Mustafa Alper Akkasa and Radosveta Sokullu, “An IoT based greenhouse monitoring system with Micaz motes”, Procedia Computer Science, Vol.113, pp.603-608, 2017. DOI: 10.1016/j.procs.2017.08.300

Foughali Karim, Fathalah Karim and Ali frihida, “Monitoring system using web of things in precision agriculture”, Procedia Computer Science, Vol.110, pp.402-409, 2017. DOI: 10.1016/j.procs.2017.06.083

Juha Backman, Pyry Piirainen and Timo Oksanen, “Smooth turning path generation for agricultural vehicles in headlands”, Biosystems Engineering, Vol.139, pp.76-86, 2015. DOI: 10.1016/j.biosystemseng.2015.08.005

Josse De Baerdemaker, “Precision Agriculture Technology and Robotics for Good Agricultural Practices”, IFAC Proceedings Volumes, Vol.46, No.4, pp.1-4, 2013. DOI: 10.3182/20130327-3-JP-3017.00003

Philip J.Sammons, Tomonari Furukawa and Andrew Bulgin, “Autonomous Pesticide Spraying Robot for use in a Greenhouse”, pp.1-9, 2005.

Gilad Gat, Samuel Gan-mor and Amir Degani, “Stable and robust vehicle steering control using an over-head guide in greenhouse tasks”, Computers and Electronics in Agriculture, Vol.121, pp.234-244, 2016. DOI:10.1016/j.compag.2015.12.019

Simon Janos, Goran Martinovi´c and Istv´an Matijevics, “WSN Implementation in the Greenhouse Environment Using Mobile Measuring Station”, International Journal of Electrical and Computer Engineering Systems, Vol.1, No.1, pp.37-44, 2010.

I.-Chang Yang, Kuang-Wen Hsieh, Chao-Yin Tsai, Yu-I. Huang, Yu-Liang Chen and Suming Chen, “Development of an automation system for greenhouse seeding production management using radio-frequency-identification and local remote sensing techniques”, Engineering in Agriculture, Environment and Food, Vol.7, No.1, pp.52-58, 2014. DOI: 10.1016/j.eaef.2013.12.009

Javier L´opez-Mart´inez, Jos´e L.Blanco-Claraco, Jos´e P´erez-Alonso and ´Angel J.Callej ´on-Ferre, “Distributed network for measuring climatic parameters in heterogeneous environments: Application in a greenhouse”, Computers and Electronics in Agriculture, Vol.145, pp.105-121, 2018. DOI: 10.1016/j.compag.2017.12.028

B. Marchial, S. Zanonia and M. Pasetti, “Industrial Symbiosis for Greener Horticulture Practices: The CO2 Enrichment from Energy Intensive Industrial Processes”, Procedia CIRP, Vol.69, pp.562-567, 2018. DOI:10.1016/j.procir.2017.11.117

Prashant Singh Chauhan, Anil Kumar and Chayut Nuntadusit, “Heat transfer analysis of PV integrated modified greenhouse dryer”, Renewable Energy, Vol.121, pp.53-65, 2018. DOI: 10.1016/j.renene.2018.01.017

J. del Sagrado, J. A. S´anchez, F. Rodr´iguez and M. Berenguel, “Bayesian networks for greenhouse temperature control”, Journal of Applied Logic, Vol.17, pp.25-35, 2016. DOI: 10.1016/j.jal.2015.09.006

Takayuki Suyama, Futoshi Naya, and Yutaka Yanagisawa, “Environmental Sensing in a Plastic Greenhouse by Sensor Network”, DICOMO 2013, pp.938-944, 2013.

Tokihiro Fukatsu and Masayuki Hirafuji, “Development of Field Servers for a Field Monitoring System”, Agricultural Information Research, Vol.12, No.1, pp.1-12, 2003. DOI: 10.3173/AIR.12.1

Yoshitaka Hara, “Autonomous navigation with ROS”, Journal of the Robotics Society of Japan, Vol.35, No.4, pp.286-290, 2017. DOI: 10.7210/jrsj.35.286

Atsushi Watanabe, “Development of a ROS-based Oil Plant Inspection Mobile Robot System –Making Decision between ROS Ecosystem’s and From-Scratch Packages–”, Journal of the Robotics Society of Japan, Vol.35, No.4, pp.291-294, 2017. DOI: 10.7210/jrsj.35.291

How to Cite
Iida, K., Kumamoto, H., Nakamura, S., & Ueda, E. (2020). Mobile Robot for Environmental Measurement in Greenhouse. Journal of the Institute of Industrial Applications Engineers, 8(1), 33.