Ultraviolet sensing system using ZnO based surface acoustic wave oscillator

Da-Long Chenga, Kuo-Sheng Kaoa,*, Ching-Han Loa, Chia-Hua Liangb, Leong-Perng Chanc,d, Chen-Wan Tsunga, and Yen-Yi Lic

a Department of Computer and Communication, Shu-Te University, Taiwan.
b Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
c Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
d Department of Otolaryngology-Head and Neck Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
e Graduate Institute of Architecture and Interior Design, Shu-Te University, Taiwan.

*Corresponding Author: kks@stu.edu.tw

Abstract

In accompany with the technique of semiconductor fabrication development, the ultraviolet (UV) sensor with specific wavelength absorption is worthy to investigate. This study realized a highly-sensitive UV sensing system based on a ZnO/LiNbO\textsubscript{3} hybrid surface-acoustic-wave (SAW) device, where ZnO is used as UV sensing material. The system includes a ZnO based SAW oscillator, a local oscillator, a Mixer, a frequency to voltage (F/V) converter, an analog to digital (A/D) converter, and a liquid crystal display interface. The ZnO UV sensor is characterized for its functional performance under different intensities of UV illumination. Experimental results show that the frequency shift of the SAW oscillator output exhibit a linear variation with UV light intensity. The low level UV intensity can be easily detected.

Keywords: ZnO, ultraviolet, surface-acoustic-wave.

1. Introduction

Detection of UV radiation is very important in a number of medical areas, such as biological fluorescence detection, UV disinfection, pollution monitoring, water purification, and resin curing of polymeric materials. Recently, UV light detection with ZnO has attracted much interest because of its excellent piezoelectric, optical, and semiconducting properties(1–3). ZnO is a direct band gap (3.3 eV) semiconductor material with hexagonal wurtzite structure and has potential applications for SAW devices, transparent conducting layers, gas sensors, light-emitting diodes (LEDs) and especially the UV sensors. It has a larger exciton binding energy (60 meV) than other wide band-gap semiconductor materials (GaN, 25 meV). This may lower the threshold of UV excitonic lasers and be used in the integrated circuit system including and the tunable UV photodetectors.

Various methods have been used to achieve the UV sensor such as photoconducting effect(1), metal semiconductor Schottky barriers(2), and the frequency response of SAW oscillator(3–4). SAW devices are very sensitive to surface changes, because in SAW devices a high density of acoustic energy propagates in the near-surface region of a piezoelectric.

In this report, we deposited a ZnO layer on the piezoelectric material (LiNbO\textsubscript{3}) to realize a UV sensor using SAW technology. The design and fabrication process of the UV sensor were described and the response for the frequency shift in the SAW device under UV illumination was discussed.

2. Experiment and discussion

2.1 Fabricated SAW device

A metallic zinc of 2-inch diameter and 0.25-inch thickness with 99.99 \% purity was used as the target. After the vacuum chamber was evacuated below 10-5 Torr, argon (Ar) and oxygen (O\textsubscript{2}) gases were introduced into the chamber as gas atmosphere during sputtering. The working pressure and rf power were 25 mTorr and 120 W,
respectively. The ratio of gas flow rate ($O_2/(Ar + O_2)$) was keep at 75%. The shutter was opened to sputter for 3 hours after 30 min of pre-sputtering. Table I presents the detailed sputtering parameters of ZnO piezoelectric layer.

Figure 1 shows full view of the hybrid SAW device. Thirty pairs of aluminum interdigital transducers were deposited on the ZnO layer surface of the hybrid SAW device, which the ZnO layer with the grain size of 100 nm and the thickness of 2.5 μm was grown by RF magnetron sputtering on LiNbO$_3$ substrates.

<table>
<thead>
<tr>
<th>TABLE I Deosition parameters of ZnO thin films</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
</tr>
<tr>
<td>Substrate to target distance</td>
</tr>
<tr>
<td>rf power</td>
</tr>
<tr>
<td>Based vacuum</td>
</tr>
<tr>
<td>Sputtering pressure</td>
</tr>
<tr>
<td>O_2 gas flos rate</td>
</tr>
<tr>
<td>Ar gas flow rate</td>
</tr>
<tr>
<td>Deposition time</td>
</tr>
</tbody>
</table>

Fig. 1. Full view of the SAW device.

2.2 Detection circuit

The UV sensing system contains a detection circuit, a signal processing circuit and a readout circuit. Detection circuit includes a ZnO based SAW device and a LC circuit combined with a transistor for feedback to achieve a SAW oscillator as shown in Fig. 2. Figure 2 (a) illustrates the circuit of the SAW oscillator. The SAW oscillator consists of a high frequency amplifier, the match networks and a ZnO/LiNbO$_3$ layered SAW device. There are three kinds of preferred oscillated circuit for SAW: Colpitts, Clapp and Pierce. Because of the potential for high Q-value, low noise level and higher stability, we have selected Colpitts circuit to realize SAW oscillator. The Q_1 is BFR505, R_1 is 220 Ω, R_2 is 12 kΩ, R_3 is 91 Ω, L_1 is 100 nH, L_2 is 10 nH, L_3 is 100 nH, L_4 is 15 nH, L_5 is 15 nH, C_1 is 0.5 pF, C_2 is 1000 pF, C_3 is 330 pF, C_4 is 270 pF, C_5 is 68 pF, C_6 is 3.3 pF, C_7 is 33 pF. Frequency output of ZnO/LiNbO$_3$ hybrid SAW oscillator is about 107.98 MHz as shown in Fig. 2(c).

Fig. 2. (a) The electrical circuit design, (b) a practical device and (c) frequency response of the SAW oscillator.
2.3 Signal processing and readout circuit

To analyze the frequency shift, the output signals of the SAW oscillator and the local oscillator (LO) were fed to a frequency mixer as shown in Fig. 3. The local oscillator is a voltage-controlled circuit corresponding to a resonant frequency varied from 100 MHz to 120 MHz. SAW oscillator and local oscillator (LO) are using the same transistor and oscillation pattern.

![Fig. 3. Signal processing diagram. (RF: Radio frequency, LO: Local oscillator, IF: Intermediate frequency)](image)

Figure 4 is a mixer of signal processing circuit. The mixer is a branch-line coupler. The S parameters of mixer are shown in Fig. 4(b). Figure 5 illustrates the signal process for the readout system. The frequency to voltage converter is formed by a phase-locked loop (PLL) and a differential amplifier. PLL is a feedback loop, which contains a phase detector, a low pass filter and a voltage-controlled oscillator (VCO). The VCO and IF input are combined with a phase detector and any difference will result in a DC voltage output. The output voltage is accurately proportional to the input frequency to achieve a frequency to voltage converter. Subsequently, the output voltage is converted to an 8-bit digital signals by ADC0804. Finally, UV intensity that is related to the frequency response is calculated by PSoC and readout by a liquid-crystal display (LCD).

![Fig. 4. (a) The mixer of sensing circuit. (b) The S parameters of mixer.](image)

Figure 5 shows full view of the practical UV sensing system. The present sensing system exhibits visible-blind characteristic when it was exposed to visible light. The values of the measurement without and with UV illumination on the ZnO/LiNbO3 SAW oscillator are shown in Fig. 6(a) and 6(b) respectively. A linear frequency shift and voltage responses are clearly observed as shown in Fig. 7. The lowest sensitivity of the UV sensor in present work is about 1.8 μW/cm² with frequency shift of 5 KHz.
3. Conclusions

In conclusion, a high sensitive UV sensing system based on SAW oscillator has been realized. Results show its potential application in the measurement of low intensity of UV light (1.8 μW/cm²). The device exhibits interesting characteristics and can be effectively utilized for the development of a biomedical detector for low level UV applications.

Acknowledgment

The authors thank the Ministry of Science and Technology of the Republic of China, Taiwan, for financially supporting this research under contract numbers MOST 103-2632-E-366-001.

References