Last modified: 2013-10-01
Abstract
Keywords
References
[1].Nigel Gilbert, Researching Social Life 3rd Edition,SAGE Press, London, 2010.
[2].G. Longford, The social impact of informationtechnology on daily life, Canadian Journal of CulturalStudies, 2006.
[3].J.S. Brown, and P. Duguid, The Social Life ofInformation, Harvard Business School Press, 2002.
[4].R.C. Gonzalez, and R.E. Woods, Digital ImageProcessing, 2nd Edition, Prentice Hall, 2008.
[5].M. Kass, A. Witkin, D. Terzopoulos, Snakes: Activecontour models, International Journal of Computer Vision,vol.1, no.4 (1998), p.321.
[6].V.G. Leticia, A.A. Suzim, J. Maeda, A new automaticcircular decomposition algorithm applied to blood cellsimage, IEEE Computer Society, (2000), p.277-280.
[7].N. Sinha, A.G. Ramakrishnan, Automation ofdifferential blood count, Digital Object Identifier, vol.2,no.15-17(2003), p.547-551.
[8].Y. Cong, L. Qiuping, F. Nianlun, Microscopic imageanalysis and recognition on pathological cells, Journal ofBiomedical Engineering Research, vol.28, no.1(2009),p.35-38.
[9].H. Zhoujie, M. Shoushi, P. Xichun, P. Xin, Studies onthe recognition of marrow cell image, ComputingTechnology and Automation, vol.24, no.3 (2005).
[10].J. Debayle, and J.C. Pinoli, Multi-scale image filtering45and segmentation by menas of adaptive neighborhoodmathematical morphology, Proceeding of IEEEInternational Conference on Image Processing, Genova,Italy, vol.3(2005), p.537-540.
[11].T. Xuemin, L. Xueyin, H. Lin, Research on automaticrecognition system for leucocyte image, Journal ofBiomedical Engineering, vol.24, no.6 (2007), p.1250-1255.
[12].B. Funt, K. Bernard, L. Martin, Is machine colorconstancy good enough, Proceeding of the 5th EuropeanConference on Computer Vision, Freiburg, Germany,(1998), p.445-459.
[13].H. Lu, L. Zhang, S. Serikawa, A method for infraredimage segmentation based on sharp frequency localizedcontourlet transform and morphology, Proceeding ofInternational Conference on Intelligent Control andInformation Processing, Dalian, China, (2010), p.79-82.
[14].Y. Li, L. Zhang, H. Lu, S. Serikawa, An improveddetection algorithm based on morphology methods forblood cancer cells detection, Journal of ComputationalInformation Systems, vol.7, no.13 (2011), p.4724-4731.
[15].Y. Li, L. Zhang, H. Lu, S. Serikawa, A new type ofusing morphology methods to detect blood cancer cells,Proceeding of LNCS CCIS, Part I, vol.182(2011), p.16-23.
[16].C.W. Chen, J. Luo, and K.J. Parker, Artifact reductionin low bit rate DCT-based image compression, IEEE Trans.on Image Processing, vol.7, no.12 (1998), p.1673-1683.
[17].J. Han, M. Kamber, Data mining: Concepts andTechniques, Morgan Kaufmann Publishers, 2001.
[18].B. Otman, Z. Hongwei, K. Fakhri, Connectionist-baseddempster shafer evidential reasoning for data fusion, FuzzyBased Image Segmentation, Springer-Verlag, Berlin, 2003.
[19].S. Shen, W.A. Sandham, Fuzzy clustering basedapplications to medical image segmentation, Proceeding ofthe 25th Annual International Conference on the IEEEEMBS, Cancun, UK, (2003), p.747-750.
[20].M. Hung, D. Yang, An efficient fuzzy c-meansclustering algorithm, Proceeding of InternationalConference on Data Mining, (2001), p.225-232.
[21].J.X. Sun, Image Processing, Science Press, 2005.
[22].G. Xinbo, L. Jie, J. Hongbing, A multi-threshold imagesegmentation algorithm based on weighting fuzzy c-meansclustering and statistical test. Acta Electronic Sinica, vol.32,no.4 (2004), p.661-664.
[23].Y. Li, H. Lu, B. Li, and S. Serikawa, An automaticimage segmentation algorithm based on weighting fuzzyc-means clustering, Proceeding of LNCS CCIS, Part I,vol.182(2011), pp.24-29.
[24].L. Chen, H.D. Cheng, J. Zhang, Fuzzy subfiber and itsapplication to seismic lithology classification, informationscience, vol.1, no.2(1994), p.77-95.
[25].J. Shi, and J. Malik, Normalized cuts and imagesegmentation, IEEE Trans. on Pattern Analysis andMachine Intelligence, vol.22, no.8 (2000), p.888-905.
[26].M. Pathegama, Edge-end pixel extraction foredge-based image segmentation, Trans. on EngineeringComputing and Technology, vol.2,(2004), p.213-216.
[27].L.G. Shapiro, and G.C. Stockman, Computer Vision,Prentice Hall, 2001.
[28].S. Osher, and N. Paragios, Geometric level set methodsin imaging vision and graphics, Springer Verlag, 2003.
[29].K. Kang, Recent developments and applications ofradiation/detection technology in Tsinghua university,Nuclear Physics, vol.A-834, (2010), p.736c-742c.
[30].T.F. Chan, L. A. Vese, Active contours without edges,IEEE Trans. on Image processing, vol.10, no.2(2001),p.266-277.
[31].H. Lu, S. Serikawa, Y. Li, Proposal of fast implicitlevel set scheme for medical image segmentation using thechan and vese model, Applied Mechanics and Materials,vol.103 (2012), p.695-699.
[32].G. Kuhne, J. Weickert, Fast implicit active contourmodels, Lecture Notes in Computer Science, (2002),p.133-140.
[33].S. Qi, C. Peng, C. Jingyun, Image segmentation basedon level set method in luggage inspection system, AtomicEnergy Science and Technology, vol.40, no.6(2006),p.745-748.
[34].Y. Li, H. Lu, S. Serikawa, Image Segmentation basedon improved fast implicit level set scheme in x/γ-rayinspection system, Applied Mechanics and Materials,vol.103(2012), p.705-710.