IIAE CONFERENCE SYSTEM, The 1st IEEE/IIAE International Conference on Intelligent Systems and Image Processing 2013 (ICISIP2013)

Font Size: 
Head Orientation Modeling: Geometric Head Pose Estimation using Monocular Camera
Muhammad Sikandar Lal Khan, Shafiq Ur Réhman, Zhihan LV, Haibo Li

Last modified: 2013-10-01


In this paper we propose a simple and novel method for head pose estimation using 3D geometric modeling. Our algorithm initially employs Haar-like features to detect face and facial features area (more precisely eyes). For robust tracking of these regions; it also uses Tracking-Learning-Detection (TLD) frame work in a given video sequence. Based on two human eye-areas, we model a pivot point using distance measure devised by anthropometric statistic and MPEG-4 coding scheme. This simple geometrical approach relies on human facial feature structure on the camera-view plane to estimate yaw, pitch and roll of the human head. The accuracy and effectiveness of our proposed method is reported on live video sequence considering head mounted inertial measurement unit (IMU).


Head pose estimation; 3D geometric modeling; human motion analysis



(1)     Li, H., Roivainen, P., Forchheimer, R. : “3-D motion estimation in model-based facial image coding”, IEEE Pattern Analysis and Machine Intelligence 15, 545-555, 1993.

(2)     Lablack, A.; Maquet, F., Ihaddadene, N. & Djeraba, C.: “Visual gaze projection in front of a target scene”, IEEE International Conference on Multimedia and Expo (ICME), New York City, NY – USA, 2009.

(3)     Valenti, R., Sebe, N., Gevers, T.: “Combining Head Pose and Eye Location Information for Gaze Estimation”, IEEE Tran. on Image Processing 21, 802-815, 2012.

(4)     Rudovic, O., Pantic, M., Patras, I.: “Coupled Gaussian Processes for Pose-Invariant Facial Expression Recognition”, IEEE Transactions on Pattern Analysis and Machine Intelligence (in press), 2012.

(5)     Murphy-Chutorian, E., Trivedi, M.: “Head Pose Estimation in Computer Vision: A Survey”, IEEE Trans. Pattern Anal. Mach. Intell. 31, 607—626, 2009.

(6)     Tekalp, A., Ostermann, J.: “Face and 2-D mesh animation in MPEG-4”, Signal Processing: Image Communication 15, 387-421, 2000.

(7)     Marieb, E.: “Essential of human anatomy and physiology”, San Fransisco, USA: Pearson, 150 –151, 2006.

(8)     Chen, D., Huaqiao, U., Liu, QZ.: “Generalized Haar-Like Features for Fast Face Detection”, Machine Learning and Cybernetics 4, 2131-2135, 2000.

(9)     Kalal, Z., Mikolajczyk, K., Matas, J.: “Tracking – Learning- Detection”, Pattern Analysis and Machine Intelligence, IEEE Transactions 34, 1409-1422, 2012.

(10) Hawkes, B.: “Cervical Fusion Mid Cervical. Morphopedics. Where Technology and Orthopedics Collides”.  accessed jan 2012. (2012).

(11) Zhang, C., Zhang, Z., “A Survey of Recent Advances in Face Detection”. Microsoft Research-Technical Report-MSR-TR-2010-66. (2010).

(12) Adel Lablack, Jean Martinet and Chabane Djeraba: “Head Pose Estimation Using a Texture Model Based on Gabor Wavelets”, Pattern Recognition Recent Advances, Adam Herout (Ed.), ISBN: 978-953-7619- 90-9, InTech, 2010.

(13) Jeffrey Ng and Shaogang Gong: “Multi-View Face Detection and Pose Estimation Using A Composite Support Vector Machine across the View Sphere”, In Proc. IEEE International Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems, 14-21, 1999.

(14) Huang, J., Shao, X. & Wechsler, H.: “Face pose discrimination using support vector machines (SVM)”, 14th International Conference on Pattern Recognition (ICPR) Brisbane – Australia, Vol 1, 154–156, 1998.

(15) L. ChenL. ZhangY. HuM. LiH. Zhang: “Head Pose Estimation using Fisher Manifold Learning”, In IEEE International Workshop on Analysis and Modeling of Faces and Gesture, 203-207, 2003.

(16) Srinivasan, S. & Boyer, K.: “Head-pose estimation using view based eigenspaces”, 16th International Conference on Pattern Recognition (ICPR), Quebec City – Canada, 2002.

(17) Vineeth N. BalasubramanianSreekar KrishnaSethuraman Panchanathan: “Person - independent head pose estimation using biased manifold embedding”, In EURASIP J. Adv. Signal Process, Vol. 2008 (January 2008).

(18) Ruigang Yang: “Model-based head pose tracking with stereovision”, In Proceedings of Fifth IEEE International Conference on Automatic Face and Gesture Recognition, 255—260, 2002.

(19) Stephen Milborrow & Fred Nicolls: “Locating Facial Features with an Extended Active Shape Model”, In ECCV '08 Proceedings of the 10th European Conference on Computer Vision: Part IV, Pages 504 – 513.

(20) T.F. Cootes, G.J. Edwards & C.J. Taylor : “Active Appearance Models”. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 484—498, 1998.

(21) D. Cristinacce and T. Cootes: “Feature detection and tracking with constrained local models”, In BMVC 2006, pages 929—938, 2006.

(22) T. Vatahska, Maren Bennewitz, Sven Behnke: “Feature -based head pose estimation from images” , Humanoids, 330-335, 2007.

(23) A. H. Gee and R. Cipolla: “Determine the gaze of faces in images”, Image and Vision Computing, 12(10), 639–647, 1994.

(24) R. Stiefelhagen, J. Yang, and A. Waibel: “A model-based gaze tracking system”, In Proc of the IEEE Int. Joint Symposia on Intelligence and Systems, 1996.

(25) T. Horprasert, Y. Yacoob, and L. Davis, “Computing 3-D Head Orientation from a Monocular Image Sequence,” Proc. IEEE Int’l Conf. Automatic Face and Gesture Recognition, pp. 242-247, 1996.


Full Text: PDF